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This problem asks you to analyze a K-WTA network (K winner take all).  First read 

the K-WTA reference article, then answer the questions below.  Read the Hopfield 

reference for a more general introduction to the topic.  The power point 

presentation is also helpful as an introduction. 

 

K-WTA neural networks are relatively simple.  N neurons, with all the connection 

strengths equal to -1 (with no self-connections). 

 

1.Define the connection strength matrix W. 

Answer: 
 

 

wij  = connection strength between neuron i and neuron j.  

   Connection strengths are symmetric: wij = wji. 

   wij = -1 if i is not equal to j 

   wii = 0 (no self-connections) 

   W is an nxn symmetric matrix. 

 

In java we can write like that 

 
for ( i=0;  i < this.m_numberOfNeurons; i++) 

  { 

   for (int j=0;  j < this.m_numberOfNeurons; j++) 

   { 

    // Setting initial Weights 

    if (i==j) 

    { 

     this.m_weights[i][j] = 0; 

    } 

    else 

    { 

     this.m_weights [i][j] = -1; 

    } 

 

   } 
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N=3, then try to generalize the result to arbitrary N).
Eigenvectors exist only for square matrices. An eigen
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• Eigenvalues and eigenvectors can be complex

• The dimension of the eigenspace corresponding to an eigenvalue is less than or equal to the 

multiplicity of that eigenvalue. 

• The techniques used here are practical for 

larger matrices are often found using other techniques, such as iterative methods. 
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Consider a  symmetric network which bounded  continuous activation values 

 
We will call K winner network if it satisfies the following conditions. 

It always converges to a final state consisting of K units with maximum activation value  and N-k units with 

minimum activation value. 

The units at the maximum values are those units that had larger initial states. 

 

The permissible exceptions are when there are ties between the winners. 

The initial state of a unit is defined to  be the value of   

 

Where    is the external input.  Here we assume that external inputs are constant with respect to time but 

can be different for each unit.  

 k-winner corners of the N dimensional hypercube formed by the M and m boundaries. 

Now let  

 

The set of K winner corners for a given K and N. If    

Then exactly K of     are equal to M and the rest are equal to m. So for a given choice of  K all the  

lie on a common  N-1  dimensional hyperplane perpendicular to the vector [1……,]. Thus , all k-winner 

hyperplanes are parallel. 

 

4. Show that the k-winner states are stable equilibriums when the external input 

satisfies (assume m=0 and M=1): 

 

k-1 < ext < k. 

 

Hint: K-winner states are the corners of the hypercube corresponding to k neurons 

at maximum activation and the rest at minimum activation.  To show that these 

states are stable equilibriums you must imagine the activation vector as being very 

close to, but not on, the hypercube corner.  Then show that the dynamics of the 

network will "drive" the activation vector into the corner, as opposed to away from 

the corner.  That is, if activation is near the maximum, then the update will add a 

positive amount, and if an activation is near the minimum the update will add a 

negative amount. 
 

Here we consider 
 

maximum neuron activation = 1 
minimum neuron activation = 0 

 

K-winner states are the corners of the hypercube corresponding to k neurons at maximum 
activation and the rest at minimum activation. To show that these states are stable equilibriums we 
must imagine the activation vector as being very close to, but not on, the hypercube corner. Then 
we show that the dynamics of the network will "drive" the activation vector into the corner, as 
opposed to away from the corner. That is, if activation is near the maximum, then the update will 
add a positive amount, and if an activation is near the minimum the update will add a negative 
amount k-winner states are at a stable equilibrium when the neuron activations are no longer 
changing from one iteration to the next. Neuron activations get updated through the following: 



(1) ai(t+1) = ai(t) + step * (M - ai(t)) * (ai(t) - m) * neti(t) 
where 'M' is the maximum activation, 'm' is the minimum activation, step is a constant that 
determines how fast the system converges to a stable equilibrium, and 'net' is the net input to a 
neuron. 
The system enters into stable equilibrium when ai(t+1) = ai(t) for all neurons. In our system, this 
occurs when all neurons have an activation of either 'M' or 'm'. When this occurs, (M - ai(t)) * 
(ai(t) - m) = 0 and then ai(t+1) = ai(t) for all neurons. 
As the activation vector approaches a hypercube corner, (M - ai(t)) * (ai(t) - m) approaches a 
minimum (0 in our case), causing the neurons to get closer to either 'm' or 'M' by increasingly 
smaller increments. 
However, in order for the neuron's activations to get closer to the hypercube corner, the neti(t) 
factor must be positive for the neurons approaching 'M' (winners) and negative for the neurons 
approaching 'm ' (losers). 
(2a) for k winners: neti(t) > 0 
(2b) for N-k losers: neti(t) < 0 
neti(t) is calculated through: 
(3) neti(t) = [Wa(t) + e(t)]i 
where W is an NxN matrix of connection strengths (wij) populated with 0 where i = j and -1 
everywhere else and e is our external input. In the hypercube corner where k neurons have 'M' 
activation (1 in our case) and N-k neurons have 'm' activation (0 in our case), the following is 
true: 
(4a) for k winners: neti(t) = - (k - 1) + ei 
(4b) for N-k losers: neti(t) = - k + ei 
However, as the system approaches the hypercube corner, the winners aren't quite all at 'M' and 
the losers aren't quite all at 'm' so, 
(5a) for k winners: neti(t) < - (k - 1) + ei 
(5b) for N-k losers: neti(t) > - k + ei 
With our assumptions regarding the sign of neti(t) from (2), this becomes: 
(6a) for k winners: 0 < - (k - 1) + e 
(6b) for N-k losers: 0 > - k + e 
Solving for e yields: 
(7) k - 1 < e < k 

 

 

 

5. Show that the dynamics defined by da/dt = net is a gradient descent on the energy 

function. 
 
 

Gradient descent is a first-order optimization algorithm. To find a local minimum of a function using 

gradient descent, one takes steps proportional to the negative of the gradient (or the approximate gradient) of 

the function at the current point.  

 

Suppose in the k winner network  if we have 

 

number of neurons = 20 
maximum neuron activation = 1 
minimum neuron activation = 0 
number of iterations =500 

 

The following graphs show that energy decreases for each iteration. 

 Here  “Octave” is  used to plot the results 

 



 

 

 

 

 

 

 

 

 

Gradient descent 

network is defined to be

 

A corner  seeking part implemented 

 

So interactive activation 

 

 Step 1: For each   unit calculate the negative gradient via 

orthant of  N

hypercube, call it corner(t). From the vector  difference between  the current activations a(t) and this corner 

vector: corner(t) 

 

Gradient descent  with respect to an 

network is defined to be 

seeking part implemented 

So interactive activation can be viewed geometrically as a two step process

Step 1: For each   unit calculate the negative gradient via 

orthant of  N- dimensional space. That orthant  is consistent with a particular corner of  the N

hypercube, call it corner(t). From the vector  difference between  the current activations a(t) and this corner 

vector: corner(t) – a(t). 

respect to an  energy function, implemented by 

seeking part implemented  and 

can be viewed geometrically as a two step process

Step 1: For each   unit calculate the negative gradient via 

dimensional space. That orthant  is consistent with a particular corner of  the N

hypercube, call it corner(t). From the vector  difference between  the current activations a(t) and this corner 

 

 

energy function, implemented by  calculations. The energy of the  
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. The vector  points into particular  
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calculations. The energy of the  
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hypercube, call it corner(t). From the vector  difference between  the current activations a(t) and this corner 



Step2: 

 

The multiplying   gives the components of the vector that the dynamics 

will follow  That is  where 

 
 

From this geometric point of view we can say that  that the dynamics follow a vector that points into an 

orthant that is on the positive side of the gradient descent; thus , for sufficiently small step size , the energy 

of network decreases at each iteration. 
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